
Chapter 7 

Exchanges and Prices  
on the Financial Market 

7.1. A reinterpretation of the financial quantities in a market and price logic: 
the perfect market 

7.1.1. The perfect market    

The relations examined in Chapter 2, which follow from indifference financial 
laws, give rise to models summarizing preferences in simple or complex exchange 
operations. Such models enable the measurement of the value given to the 
temporary availability of financial capital, by means of calculation of the interest on 
the landed principal or, more generally, of the return of a financial investment. 

Many of these concepts can be reformulated more concretely, putting them in a 
market logic, in particular, of the exchange market, establishing the relations that 
link prices of assets, obtained by the meeting of global demand and supply in this 
market. Therefore, we consider now a different, but analogous, formulation of the 
theory of financial equivalence, which is helpful in understanding the exchanges 
taking place in the financial market. Exchange factors in the presence of effective 
transactions and the indifference relation (in particular, of equivalence if the right 
conditions, which realize the strong decomposability, exist) that links financial 
values of market referred to different times are considered in this formulation. 

The point of view introduced here is therefore an inversion with respect to the 
settings of Chapter 2 and to the particular cases of Chapter 3, which gave rise to the 
results of Chapter 4, 5 and 6. In fact, in the previous chapters, on the basis of a 
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theoretical approach, first a financial law is introduced; from there the value at a 
given time of the activities linked to an operation O net of the losses is obtained; 
finally the price is adapted to the found value. In this chapter we use an empirical 
approach in the sense that the initial input is the price of the activities in O net of the 
losses (price obtainable from “market surveys” in broad sense) and from it – on the 
basis of constraints and relations analogous to those that gave rise to the value – is 
found the coherent structure of return dynamics that links by equivalence the given 
price to O. From this last point of view, we can see, as a particular case of fixed 
rates, the calculation of the internal rate of return (IRR) of a project O (see 
section 4.4). 

To fully understand the approach that we called empiric, it is convenient, for 
simplicity, to refer to the case of bonds, public or private, and to the specific market 
where they are traded. The management of loans shared in stocks and the connected 
financial valuation has already been discussed in Chapter 6, where, amongst other 
things, we considered drawing bonds. In addition, we analyze the properties of 
securities prices that come from a special hypothesis on the financial market, which 
enables us to speak about a perfect capital market.   

We talk about a perfect market when it has the following features: 

– no friction, i.e.: 

- no transaction cost and taxes;  

- the possibility of short selling, i.e. sale of securities not owned by the seller 
with delivery at sale date; 

- no risk of default (thus certainty of results); 

- homogenity of information; 

– continuity,  i.e.: 

- securities are infinitively divisible and can be increased; there is no limitation 
in the trading quantities;  

– competitiveness, i.e. each market operator: 

- maximizing his profit – he prefers, all things being equal, to own higher 
quantities (see rule c of economic behavior in Chapter 1); 

- is a price taker, i.e. he is a passive subject, not active, with respect to price, in 
the sense that his operation does not influence the stock price; 

– coherence, i.e.:  
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– no-arbitrage opportunities1.  

We will call a market satisfying the coherence hypothesis coherent. 

It is clear that the perfect market comes from ideal and theoretical conditions; 
such a market is a model for study. It will be interesting to analyze the properties 
that are valid for transactions in such markets, properties analogous to those 
considered for financial laws in a different content. Note that in a real market some 
of the hypotheses may not be true, as well as some of the properties. 

7.1.2. Bonds 

We will not consider in this chapter random operations, but only bonds with 
certain maturity, concentrating on the following basics types. 

a) Zero-coupon bond 

In such a security the investor returns are completely incorporated; from the 
financial viewpoint, the debtor, who is the issuer of N bonds with maturity t, issue 
value P and nominal (and redemption) value C, makes the pure exchange operation 

 (0, NP) (t, NC)U   (7.1) 

whereas each creditor, subscriber or purchaser of a bond, makes the operation 

 (0, -P) (t,C)U  (7.2) 

Usually the zero-coupon bonds have maturities that are not too long. Referring to 
operation (7.2), the return rate for the length t is given by it = (C-P)/P. With 
reference to a regime of simple accumulation (being t 1) and then to the intensity j 
= it/t, given on the basis of market considerations, we obtain 

 P  = C/(1+jt) (7.3) 

                                                           
1 To clarify this context, an operation O, defined in (4.1) or (4.1'), is called arbitrage (non-
risk) if the amounts Sh, not all zero, have the same sign. Therefore, O is not fair with any 
financial law. There are two types of arbitrage: 

a)  purchase of non-negative amounts, with at least a positive one, at a non-positive price 
(for free or with an encashment); 

b) purchase of non-negative amounts at a negative price (with an encashment). The 
market coherence is equivalent to the principle of “no arbitrage”. 
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i.e. the issue value is the discounted value of C in regime of rational discount 
(conjugated to the simple accumulation). 

Example 7.1 

In the issue of a semiannual zero-coupon bond for 181 days, let the purchase 
price for 100 nominal be 95.18. Not considering taxes, it follows that the per period 
return rate is (100-95.18)/95.18 = 5.0641% and has an intensity equal to 10.0722 
years

-1
. 

Considering a taxation of 12.5%, the purchaser pays effectively 
95.18+0.125 (100-95.18) = 95.7825, to which corresponds a net per period rate of 
4.4032% and an intensity equal to 8.7578 years-1. 

b) Coupon bond 

In such a security, described in Chapter 6 as a shared loan with certain maturity, 
the investor return has a component of return paid periodically, i.e. interest 
payments (coupon payment), to which can be added a component of incorporated 
return, positive or negative (the capital gain or capital loss, with issues or purchases 
respectively at discount or at premium). The investor lends to the issuer the amount 
P (issue price), or buys from the previous investor on the exchange market paying 
the price P (purchase price). In both cases he periodically receives, for the residual 
life, the payment I = C’j of the coupons, with j being the coupon rate and C’ the 
nominal value redeemed at maturity. If the redemption value C is different from the 
nominal value, one considers C in the financial valuation. Here, we consider fixed 
coupon bonds, deferring to the following section 8.5 for a brief introduction to 
bonds with varying coupons. 

Therefore, indicating with n the maturity of the loan, the financial operation for 
the bondholder is given by 

 T&S =  (t, t+1, .... , n-1, n)&(-P, I, ...., I, C+I)  (7.4) 

where we assume t = 0 in the case of subscription at the issue date, t   in case of 
later purchase. In all cases n-t is the length of the investment, equal to the bond 
maturity, if t = 0.  

Fixed coupon bonds are widely used for long-term investments. 

Example 7.2 

Let us consider a 5-year coupon bond with semiannual coupon and nominal 
annual rate 2-convertible of 6%, issue price 96.2 for 100 nominal. Not considering 
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taxes, this results in T&S = (0; 0.5;1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5) & (-96.2; 3; 3; 3; 
3; 3; 3; 3; 3; 3; 103). 

The rates are: coupon rate = 3 %, current semiannual rate = 3/96.2 = 3.1185% 
i.e. annual rate of 6.3343%, effective semiannual rate (with the capital gain), i.e. the 
semiannual IRR of the operation, which is solution x of the following equation: 

 -96.2 + 3 a10 |x + 100 (1+x)-10 = 0  

This results in x = IRR semiannual = 3.4559%, annual IRR 7.0312%. 

Let us also consider a 5-year coupon bond at the annual nominal rate of 6%. It is 
issued at September 1, 2001, then with a maturity date of September 1, 2006, at the 
price of 95.35.  The semiannual coupons are paid on March 1 and September 1 of 
each year until maturity. In t = January 14, 2003 the ex-interest price  (EIP), which 
assigns to the buyer a share of the current coupon after purchase is 95.75.   

Calculation of residual life in t: 3 years+230 days. 

Calculation of net coupon: with taxes at 12.5%, we have: 3 (1-0.125) = 2.625. 

Calculation of net redemption value: with taxes at 12.5%, we have: 100-
0.125 (100-95.35) = 99.419. 

Calculation at time t of the price, called the flat price (FP), which assigns to the 
buyer the whole current coupon, so it is given by the ex-interest price (EIP) plus the 
“before day-by-day interests” (b.dbdi) from the last coupon payment (September 1, 
2002) until t, then for 135 days; we have: FP = EIP + b.dbdi = 95.75 + 
2.625 135/181 = 97.708. 

Calculation of “ex-coupon price” at time t: paying the ex-coupon price ECP the 
buyer obtains the bond without current coupon; so ECP is given by EIP minus 
“after- day by day interests” (a.dbdi) from t until the next coupon payment (March 1, 
2003), then for 46 days; we have: ECP = EIP - a.dbdi = 95.75 - 2.625  46/181 = 
95.08.  Obviously it then also results: ECP = FP - (net) coupon = FP - 2.625. 

Other types of bonds can depend on the variability or randomness of the coupon. 
In fact, we can have: 

– a coupon with varying rate according to a previous agreed rule; 

– a coupon with indexed rate, linked to the future evolution of market or 
macroeconomic indices. 



294     Mathematical Finance 

7.2. Spot contracts, price and rates. Yield rate 

Using the theory of financial contract, we will develop a parallel discussion to 
that in Chapter 2 that will consider the price formation, in a perfect market or at least 
under the coherence hypothesis, in conditions of certainty. To better clarify the 
analogy, we will use the same symbols, but with a different meaning. 

Referring initially to a unitary zero-coupon bond (UZCB) as a fundamental 
element (given that more complex transactions can be obtained as linear 
combinations of UZCB with increasing lengths), we indicate with small letters the 
times, i.e. the distances from the chosen origin 0. If  

 v(y,z)  ,   y  z (7.5) 

is the market price paid in y to purchase the unitary amount in z on the basis of a 
contract entered into at time y, then such a contract is called a spot contract and 
v(y,z) is the spot price (SP); note that the supply (y;v(y,z)) can be exchanged with 
the supply (z;1). The interval (y,z) is called the exchange horizon (e.h.). 

The analogy of v(y,z) with the discount factor a(z,y) defined in Chapter 2, going 
from values, following subjective valuations, to prices, following market laws, is 
obvious. The position of the variables, (y,z) instead of (z,y) for v, being y<z, is due to 
the prevalent use of operators that prefer a chronological order.  

On the basis of the money return principle it follows that: 

v(y,z) < 1  ,  y<z) (7.6) 

Although prices are formed in light of complex causes, the introduction of 
market hypothesis imposes conditions and constraints. Thus, from market coherence 
it follows that: 

 v(y,z) > 0    (y < z)  ,   v(y,y) = 1  (7.7)  

In the same way, from coherence follows the decreasing of prices with time to 
maturity of the bond (that is the final time of the e.h), i.e.: 

              v(y,z') > v(y,z") ,   (y  z'  z"  2                  (7.7') 

                                                           
2 The proof follows ab absurdo, observing that if it were v(y,z')  v(y,z"), the composition of 
the three operations: 

1) purchase in y of UZCB with maturity z';   
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The return inherent in the exchange between [y,v(y,z)] and (z,1) can be measured 
by the rate, which is defined by: 

 i(y,z)    =    [v(y,z)]-1/(z - y) -1 (7.8) 

Equation (7.8) shows that in this context the rate is not per period but is per unit 
of time, i.e. on unitary base, i.e. on a unitary basis, in particular on an annual basis 
if the unit is a year. 

By inversion of (7.8) the following is obtained: 

 v(y,z)  =  [1 + i(y,z) ]-(z - y) (7.8') 

Observation    

When the price v is a function of return variables, as in (7.8'), and such variables 
are expressed by the market, then v changes its nature, assuming that of value 
following a calculation.    

We define intensity of return at maturity (intensity r.m.), referring to a spot 
contract, by the function: 

(y,z)     =   - ln v(y,z)/(z - y) (7.9) 

By inverting (7.9) f(y,z) satisfies: 

 v(y,z)  =  e- (y, z)(z - y) (7.10) 

that is – recalling the definition of instantaneous intensity given in Chapter 2 for a 
discount law with two time-variables, to which those for the price formation are 
analogous – the intensity (y,z) coincides with the constant instantaneous intensity 
of the exponential law equivalent, in return terms, to the one obtainable from v(y,z) 
on the e.h. (y,z). In addition, due to (7.9), being: ln v(y,z) = - (y,u)duy

z , the 
formula (y,z) = ( (y,u)duy

z )/(z-y) follows. Then the intensity r.m. (y,z) is the 
mean of the instantaneous intensities (y,u) agreed in y and varying with u in the 
interval (y,z). 

                                                                                                                                        
2) short sell in y of UZCB with maturity z"; 
3) purchase in z' of UZCB with maturity z"; 

is equivalent to the union of the supplies [y, v(y,z") - v(y,z')], [z’,1-v(z',z")]. Taking into 
account (7.6), in the hypothesis to verify the amount of the former supply is non-negative and 
that of the second one is positive, in contrast with the no arbitrage principle. 
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It follows that in the continuous time approach the return structure of the spot 
market can be fully found from the assumption of the financial law d(y,u) because 
from it we find for all intervals (y,z) the intensity r.m. and then the spot rates and 
prices according to the other constraints. In fact, taking into account (7.9) and (7.10) 
and the comparison between  (7.8) and (7.9), we find the relation between rate and 
intensity r.m., expressed by:  

(y,z)  =  ln[1+i(y,z)] (7.11) 

or, by inversion, 

 i(y,z)  =  e (y,z) -1 (7.11') 

From what has been said above, the analogy of (7.11) with that regarding the 
constant intensity of the exponential law as a function of the rate:  d = ln(1+i) (i.e. 
flat structure) is obvious. Furthermore, due to (7.11), recalling the logarithmic 
series, it follows that: 

 
(y,z) ( 1)k 1 [i(y,z)] k

kk 1
 

where the quadratic approximation of (y,z) is: i (y,z) [i (y,z)]2 
 i (y,z) . It 

follows that the exact value of (y,z) is between its quadratic approximation and 
i(y,z). 

Example 7.3 

Assuming a (bank) year as the time unit, if 0.95 is the price paid on February 15, 
2003 to purchase a UZCB with maturity June 30, 2003, the annual return rate of the 
operation is 14.6578% , while the intensity at maturity is 0.136782 per year.  

In fact, we have: 

 

  

v(y,z) 0.95

y (February 15,  2003)

z (June 30,  2003)
 z y

135
360

 years
 

from which, due to (7.8), it follows that: 

i (y,z) v(y,z)

1
z y 1 (0.95)

360
135 1 0.1465783

h(y,z) ln  v(y,z) /(z y) ( ln  0.95)
360
135

0.1367821
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Example 7.4 

The SP of a quarterly UZCB with annual intensity of intensity r.m. at level of 
0.03 is equal to 0.99252805. The annual return rate is 3.0454%. 

In fact, we have: 

( , ) 0.03

1
0.25 years

4

y z

z y
 

from which, for (7.10), it follows that: 

v(y,z) e (y,z)(z y ) e 0.03 0.25 0.99252805 

i (y,z) e (y,z) 1 (0.99252805) 4 1 0.03045453  

If the zero-coupon bond is not of unitary type, having a redemption value S at 
maturity z, for the perfect market property (continuity and price-taker) it follows 
that the price of the security in y, indicated with V(y,z;S), is equivalent to that of S  
UZCB, the price of which is v(y,z), which then must be: 

 V(y,z;S)    =    S  v(y,z)  3   (7.12) 

Example 7.5 

Using data of Example 7.3, on February 15, 2003 the SP of a zero-coupon bond 
with redemption value 100 and maturing on June 30, 2003 is 95. 

In fact, we have: 

V (y,z;100) 100 v(y,z) 100 0.95 95 

Example 7.6 

If the SP of a two-yearly zero-coupon bond with redemption value 200 is 150, 
the SP of a corresponding two-yearly UZCB is 0.75. 

                                                           
3 We can prove (7.12) ab absurdo, on the basis of the no arbitrage principle, showing that the 
hypothesis of inequality of prices between the non-unitary zero-coupon bond, whose value is 
V(y,z;S), and the S UZCB allows an arbitrage, obtained with the short selling of stocks with 
higher price. So that if, in (7.12),  the results are V(y,z;S) < S v(y,z), the arbitrage is obtained 
by buying in y the bond that gives (z,S) and short selling in y the S  UZCB with maturity z. 
We obtain an analogous conclusion if V(y,z;S) > S v(y,z). 
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In fact, we have: 

v(y,z)
V (y,z; 200)

200
150
200

0.75
 

We have highlighted the analogy of v(y,z) with the discount factor a(z,y) of a 
financial law with two time variables. However, we can also work in a market logic 
with the analogy of the accumulation factor m(y,z) resulting from the conjugated law 
a(z,y), then given by its reciprocal.  We can precisely define: m(y,z) = 1/v(y,z) as the 
ratio between the encashment K due to owning the bond at maturity z and the price 
Kv(y,z) paid for its purchase at a time y<z. It follows that m(y,z)-1 is the 
incorporated per period return rate, which refers to e.h. and is obtained by such 
investment. 

Considering complex securities that regard inflow vectors {Sk} of subsequent 
amounts according to the maturities {zk}, i.e. operations that regard m the supplies: 

 {(z1, S1), (z2, S2), ..... , (zn, Sn)} (7.13) 

it is obvious that, given the infinite divisibility of securities in a perfect market, such 

amounts can also be obtained forming a portfolio S (= set of distinct securities) of 

kSk 1
n  UZCB, divided amongst n maturities in order to have Sk UZCB with 

maturity zk (k=1,2,...,n). If the operation is carried out at time y, the price of one 

UZCB that matures in zk is given by v(y,zk), thus the price in y of the whole portfolio 

is: 

 Skk 1
n

 v(y,zk )  (7.14) 

From the market coherence follows the property of price linearity: the price 
V(y,S) of the portfolio S, i.e. of the complex security, must coincide with the value 
(7.14). In formula:  

 V(y,S)   =  
V

k 1
n (y,zk;Sk )

  =  Skk 1
n

 v(y,zk ) 4  (7.15) 

                                                           
4 For proof, it is enough to repeat for each maturity the argument in footnote 3: if (7.15) is not 
satisfied, there is arbitrage with the buying (selling) in t of the complex security and the 
selling (buying) in t of  Sk  UZCB with maturity  zk . 
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The supplies of the bonds with fixed coupon (coupon bonds or bullet bonds) or 
also bonds with varying coupon (for instance, if the coupon rate varies due to 
indexing or other reasons) are included in (7.13). Indicating with C the redemption 
value of the security at time zn and with Ih the varying coupon at time zh  (I if 
constant), for such a security (7.13) becomes 

 {(z1, I1), (z2, I2), ..... , (zn-1, In-1), (zn, Cn + In )} (7.13') 

and the supplies can also be referred to the residual time after the buying on the 
market, not necessarily at the issue date. Therefore the value at time y, on the basis 
of (7.15), is given by 

 V(y,S)   =   Ikk 1
n

 v(y,zk )  + C v(y,zn ) (7.15') 

Until now we have considered prices and rates referred to a given maturity, to 
apply to securities already in the market. Let us now consider a change of the 
intensity r.m. regarding one security, or a set of homogenous securities, during its, 
or their, economic life. This is the return rate (or yield rate), defined as that rate, 
which, used to discount the cash flow produced by the security after its purchase and 
to its maturity, makes the result equal to its purchase tel quel price. Using, referring 
to the security purchased in 0:  

– P    =  purchase tel quel price; 

– n    =  residual length; 

– Y    =  yield rate; 

– Sk   =  net encashment at time zk  > 0  (k = 1,...,n). 

The rate Y is the solution of the equation: 

 P
Sk

(1 Y )zkk 1
n  (7.15") 

It is immediately verified that the yield rate is the IRR on a time interval to 
maturity and is reduced to the spot rate i(0,n) if the security is a zero-coupon bond 
with life n. 

Observing a given number of almost homogenous bonds and calculating for each 
length the yield rate corresponding to the market price according to (7.15"), on a 
Cartesian diagram we obtain a set of points with the same number of points as the 
observed bonds. By means of an appropriate interpolation we find the yield curve, 
putting on the abscissa the residual length and on the ordinate the interpolated yield. 
Such a curve is a model that gives information on the behavior of the observed bond 



300     Mathematical Finance 

market if a representative sample is used. Obviously the obtained yields for each 
length can be different from those effectively obtainable from each security on the 
market. 

We can usually say that if for the security its measured point is above (below) 
the yield curve, it is overestimated (underestimated) by the market, with the 
following input to sell (buy) if there is assumed a tendency for equilibrium. 

In conclusion, the indication obtainable from the yield curve dot does not have 
the same coherence as the spot rates. However, theoretically we can say that the 
yield rate Y of a single bond is a functional mean (according to Chisini 1929) of the 
spot rate applied for the valuation of such a bond. In a formula, indicating with Sk  
the expected inflow due to the bond at time zk , by definition this constraint:  

Sk

1 i(0,zk ) zkk 1
n Sk

(1 Y )zkk 1
n

 
follows. 

Example 7.7 

A bond issued on January 1, 2003 gives the right to the encashment sequence: 4; 
2; 101, and according to the time schedule July 1, 2003, October 1, 2003, and 
November 15, 2003. If, at the issue date and according to the same time schedule, 
the spot prices structure of the UZCB is (0.96; 0.94; 0.93), the price of the bond is 
99.65.    

In fact, indicating with: 

1 2 1 3 2;   

1 2 3 1 2 3

1 2 3

3 1.56
    ;  

12 12 12

, , )                                    = 4 , = 2 , = 101

1.1.2003 ; 1.7.2003 ;  1.10.2003 ; 15.11.2003

(

             z y year z z year z z year

S = (S S S S S S

y z z z

     v y, 1 2 3) 0.96    ;     ( ) 0.94     ;     ( ) 0.93  z v y,z v y,z

 

we have: 

V (y;S) V (y,z1;S1) V (y,z2;S2) V (y,z3;S3)

S1v(y,z1) S2v(y,z2) S3v(y,z3)

4 0.96 2 0.94 101 0.93 99.65
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Example 7.8 

If the price of the complex security in Example 7.7 is 100 on January 1, 2003, 
keeping all the other conditions the same, we would realize a secure profit of 0.35 
using the following arbitrage strategy: 

– short selling the complex bond, with a return of 100; 

– buying 4 UZCB maturing on July 1, 2003, with a cost of 4.0.96 = 3.84; 

– buying 2 UZCB maturing on October 1, 2003, with a cost of 2.0.94=1.88; 

– buying 101 UZCB maturing 15.11.2003, with a cost of 101.0.93= 93.93.  

As the result, we would have: 100 -3.84 -1.88 -93.93 = 0.35 > 0. 

Example 7.9 

Given the function 
1

, 1 1.06 1.06z yv y z  that defines the SP of a 

UZCB, where time is measured in years, the intensity r.m. of the spot contract, 
expressed in  years-1 is given, due to (7.9), by: 

ln  1 1.06 1.06
,

yz

y z
z y  

If z-y is small, 1.06z 1.06y<<1 results, then a good approximation is 
MacLaurin’s formula: 

1.06 1.06
,     

yz
y z

z y
(incremental ratio of 1.06 x) 

Using y =3 , z = 5.5, v(y,z) = 0.842622 results and we obtain:  

y,z
0.171237

2.5
0.068495 

 

Instead, using y=3 ; z=3+1/12 = 3.083333, we obtain: v(y,z) = 0.994236 , (y,z) 

= 0.069367 , approximated (y,z) = 1.196813 1.191016

0.083333
0.069568 . 
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7.3. Forward contracts, prices and rates 

We can now consider operations that include an exchange between two dates, 
both of which are after the time of the contract. Comparing with spot contracts, there 
is no more coincidence between the time of contract (in which the conditions are 
fixed) and the time of payment. In such a case, we talk about forward contracts, 
which give rise to delayed sales, agreed with time x and taking place in y > x. If, as 
we suppose, the sold asset, delivered and paid in y, is a security that gives right to an 
encashment at maturity z  y (or many encashments at times zk  y), then for each 
trade we consider three times, x, y, z. In addition, we can underline that in x (= 
contracting time) there is no money or asset transfer and that the price of the asset 
(in particular, of the security), agreed with x, is a forward price (f.p.). 

The elementary contract that we consider here is the forward purchase, with 
conditions agreed at time x but with delivery and payment at time y > x, of a UZCB 
redeemed at time z  y. Let us indicate with:  

 s(x;y,z) ,    x < y  z 5  (7.16) 

the f.p., fixed in x, of the UZCB delivered in y and with maturity in z.  

Also here is obvious the analogy of s(x;y,z) with the continuing discount factor 
with the meaning specified in Chapter 2. Furthermore, for continuity reasons 
implied in  the perfect market hypothesis for x y, it results in: 

 s(y;y,z)  =  v(y,z)  (7.17) 

then the spot contract can be seen as a limit case of the forward one. 

Example 7.10 

It is agreed today to buy, after two months, at the price of 0.80, a UZCB with a 
residual life of four months at the time of purchase. 

In symbols, expressing time in months, the agreed forward price is: s(0;2,6) = 
0.80. The financial operation can be written as  (0,2,6)&(0,-0.80,+1) or 
(0,0) (2, 0.80)U (6, 1)U . 

                                                           
5 In general, we can put:  x  y  z , meaning that if x = y  z , the contract is a spot contract. 
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Analogously to what was seen for the spot contracts, the return in the exchange 
between [y, s(x;y,z)] and (z,1) can be measured by the rate referred to a time unit, 
i.e. on unitary base, in particular annual, defined by: 

 i(x;y,z)    =    [s(x;y,z)]-1/(z - y) - 1 (7.8") 

where, by inversion, 

 s(x;y,z)  =  [1 + i(x;y,z)-(z - y)  (7.8"') 

In addition we define intensity r.m., referring to a forward contract, by the 
function: 

(x;y,z)  =   - ln [s(x;y,z)]/(z-y)  (7.9') 

By inversion: 

 s(x;y,z)  =  e - (x;y,z)(z - y)  (7.10') 

therefore (x;y,z) coincides with the constant instantaneous intensity of the 
exponential equivalent law in terms of a return to the one obtainable from s(x;y,z) on 
the e.h. (y,z). Furthermore, due to (7.9'), owing to  

ln s(x;y,z) = - ( , )
z

y
x u du , 

we have (x;y,z) = ( (x,u)duy
z )/(z-y). Thus, the intensity r.m. (x;y,z) in forward 

contracts is the mean of the instantaneous interest intensity (x,u) fixed in x and 
varying with u in the interval (y,z). Also in the forward market with a continuous 
time approach, the return structure is given starting from an instantaneous intensity 
function (x,u). In fact, from { (x,u)} we find (x;y,z) on the basis of the 
aforementioned formula. From the comparison of (7.8") and (7.9') we find the 
relation between (x;y,z) and rate, expressed by:  

(x;y,z)    =  ln [1 + i(x;y,z)]  (7.11") 
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or, by inversion: 

 i(x;y,z)  =   e (x;y,z)  - 1 (7.11"') 

On the analogy of the conclusions obtained about the spot contracts and the 
(7.11), for (x;y,z), due to (7.11"), the quadratic approximation of the logarithmic 
series holds; therefore (x;y,z) is included from its quadratic approximation 

2( ; , ) [ ( ; , )]i x y z i x y z  to i(x;y,z). 

Furthermore, for forward contracts, as well as for the spot contracts, we can 
work in a market logic in terms of accumulation and accumulation factors on the 
basis of conjugated law. Therefore, we can define, analogously to the continuing 
accumulation factor defined in Chapter 2, the factor r(x;y,z) = 1/s(x;y,z) defined as 
the ratio between the encashment K, due to the ownership of the bond at maturity z, 
and the price Ks(x;y,z) paid for its purchase at time y<z in a forward contract with 
conditions agreed in x. It follows that r(x;y,z)-1 is the per period incorporated return 
rate, referred to the e.h., obtained from such an investment. 

Example 7.11 

Considering with the same spot price function defined in Example 7.10  the 
forward contract with x = 1; y = 3; z = 5.5, the intensity r.m. is given by   

, ln  0.852869
; , ln 0.063660  

, 2.5

v x z
x y z z y

v x y
 

The corresponding annual interest rate i(x;y,z), given in the forward contract, 
satisfies relation (7.11"), i.e.: 0.063660 ln  1 ; ,i x y z , from which: i(x;y,z) = 

0.065730 = 6.5730   

7.4. The implicit structure of prices, rates and intensities 

It is fundamental that the following property of the implicit structure, if the 
market coherence holds true, links the parameters of forward contracts to those of 
spot contracts, propriety that can be summarized regarding prices with the formula: 

 s(x;y,z)  =  v(x,z)/v(x,y)   ,    (x  y  z)  (7.18) 

Equation (7.18) expresses briefly the fact that forward prices are obtained 
implicitly from the spot ones on the basis of the constraint 
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 v(x,z) = v(x,y) s(x;y,z)   ,   (x  y  z)  (7.18') 

equivalent to (7.18) and analogous to that valid for continuing factors.  

Thus, we speak about the theorem of implicit prices, observing that (7.18) 
follows from the coherence hypothesis6. This hypothesis leads us to assert that the 
applied forward rates are those implicit in the spot structure.  

Following from (7.18) and (7.7'), the relations that summarize the main 
properties of f.p. implicit in SP are as follows:  

(x  y  z):   s(x;y,z) > 0     (positive f.p.) 

(x  y): 
( ; , ) 1,      

( ) = 1

s x y z if y < z

s x; y, y
 (f.p. not greater than the profit at maturity) 

(x  y'< y"  z):  s(x; y', z)  <   s(x; y", z) (increasing of f.p. with initial time of e.h.)  

(x  y  z'< z"): s(x; y, z')  >   s(x; y, z")  (decreasing of f.p. with final time of e.h.)  

Furthermore, the perfect market hypothesis in conditions of certainty implies  the 
property, analogous to decomposability (for which, as specified in Chapter 2, the 
initial discount factor is equal to the continuing one), thus called: independency from 
contractual time, on the basis of which 

 s(x;y,z) =  s(y;y,z) = v(y,z) ,  (x y z)  (7.19) 

follows. Due to this equation, the f.p. s(x;y,z) in x to pay in y the UZCB redeemed in 
z, must coincide with the SP v(y,z) of such UZCB; this is according to the principle 
of price uniqueness of exchange on the horizon (y,z), i.e. of its invariance with 
respect to x. 

                                                           
6 Also in this case the proof holds ab absurdo, observing that the lack of (7.18) effectiveness 
leads to certain profit. Indeed, if v(x,z) > v(x,y) s(x;y,z), we would obtain a certain profit from 
the composition of the following three operations at time x:  

1)  short selling of UZCB redeemed in z;  
2)  spot purchase of s(x;y,z) unit of UZCB redeemed in y; 
3)  forward purchase, with delivery in y, of the UZCB redeemed in z. 

The result of this composition is a certain profit of the amount v(x,z) - v(x,y).s(x;y,z) in x, 
owing to the set-off among other supplies. We obtain a certain loss in the hypothesis v(x,z) < 
v(x,y) s(x;y,z), because there is a certain profit inverting the sign of each price. (7.18) is also 
justified by the fact that it must be equivalent to pay in x the spot price v(x,z) to purchase a 
unitary amount in z or investing it in x to purchase in y  z at forward price s(x;y,z), but to 

obtain the required amount s(x;y,z) in y we have to pay in x the spot price v(x,y).s(x;y,z). 
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In other words, in light of the hypothesis of independence from contractual time, 
(7.18) becomes 

 v(x,z)  =  v(x,y) v(y,z)  (7.20) 

Then the financial law induced by the spot structure is decomposable. 

Note that in practice the following can happen: 

– at time x<y the “future” price v(y,z) has to be considered random, then (7.19) 
does not hold; 

– we can find, a posteriori, SP and f.p. not satisfying (7.18); 

– the f.p. are not implicit by SP, then there are arbitrage possibilities. 

In this case, the ideal situation of a perfect market does not hold.  

Example 7.12 

Referring to data from Example 7.7, the structure of forward prices, implicit in 
that of the given spot prices, is: 

 

s(y; y,z1)
v(y,z1)
v(y, y)

v(y,z1) 0.96    (being v(y, y) = 1)

s(y; z1,z2)
v(y,z2)
v(y,z1)

0.94
0.96

0.97916666

s(y; z2,z3)
v(y,z3)
v(y,z2)

0.93
0.94

0.98936170

 

Obviously the price on January 1, 2003 of the complex examined security is 
always 99.65. In fact, we have: 

1 1 2 1 2 1 3 2 3 1 2 1( ; )  ( ; , )  ( ; , ) ( ; , )  ( ; , ) ( ; , ) ( ; , )

3.84000000 1.88000000 93.92999992 99.64999992  99.65

V y S S s y y z S s y z z s y y z S s y z z s y z z s y y z

 

In light of forward prices s(x;y,z) given by the market, we can define the implicit 
forward rates, considered as (mean) rates on unitary basis (in particular, annual), 
that express the return given by the market, and that are obviously linked to s(x.y,z) 
by (7.8") and (7.8"'). 
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If market returns are defined by means of spot rates (7.8), the implicit forward 
structure can be expressed in terms of rates using the following fundamental relation 
that follows from (7.18), applying (7.8) and (7.8"): 

 

z-x
z-y

y-x
[1  i(x,z)1 ( ; , )     
[1  i(x,y)

i x y z
]=
]

  (7.21) 

As already mentioned, we can also define the rate structure as a function of the 
intensities r.m. defined in forward contracts, adopting suitable symbols and 
changing the definitions (7.9) and (7.9'). Thus, due to (7.11) and using natural 
logarithms in (7.21) we find 

(x; y, z) (z - y)   =   (x, z)(z - x)  -  (x, y) (y - x)  (7.22) 

from which 

(x,z)  =  (x,y) 
(y - x)
(z - x)

 + (x;y,z) 
(z - y)
(z - x)

 (7.23) 

where the spot intensity r.m. in the total interval (x,z) is the weighted mean of the 
intensities r.m. (where the former is a spot intensity and the latter is a forward 
intensity) for the partial intervals (x,y) and (y,z) by which the total interval can be 
decomposed. 

Example 7.13 

Referring to the data from Example 7.7, the spot rate structure is: 

i (y,z1) v(y,z1)

1

z1 y 1 (0.96)
12

6 1 0.085069444  

i (y,z2) v(y,z2)

1

z2 y 1 (0.94)
12

9 1 0.085999258 

i (y,z3) v(y,z3)

1

z3 y 1 (0.93)

12

10,5 1 0.086474374 

 

Obviously, rates increase with decreasing prices. The corresponding structure of 
implicit forward rates is: 
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i (y; y,z1)
1 i (y,z1)

z1 y

z1 y

1 i (y, y)
y y

z1 y

1 i (y,z1) 0.08506944 

i (y; z1,z2)
1 i (y,z2)

z2 y

z2 z1

1 i (y,z1)
z1 y

z2 z1

1 0.08786128 

i (y; z2,z3)
1 i(y,z3)

z3 y

z3 z2

1 i (y,z2)
z2 y

z3 z2

1 0.089329438 

 

or, equivalently, using the results from Example 7.12: 

i (y; y,z1) s(y, y,z1)

1
z1 y 1 i (y,z1) 0.085069444 

i (y; z1,z2) s(y,z1,z2)

1
z2 z1 1 0.087861277 

i (y; z2,z3) s(y,z2,z3)

1
z3 z2 1 0.089329438 

 

Recalling that in the hypothesis of deterministic perfect market we have:    

s(y, y,z1) v(y,z1)

s(y,z1,z2) v(z1,z2)

s(y,z2,z3) v(z2,z3)

 

it follows that: 

  

i(y,z1) i(y, y,z1) 0.08506944  

i(z1, z2 ) i(y,z1, z2 ) 0.08786128   

i(z2 , z3 ) i(y,z2 , z3 ) 0.08932944  
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This means that borrowing, at market conditions, the amount 99.65, which is 
needed to purchase the security, and paying back at due dates the amounts to which 
it is entitled, at the security’s maturity, the debt will all be paid back in full without 
adding any cost or profit. 

In fact, we have: 

Time  Outstanding balance 
January 1, 2003   99.65 
July 1, 2003 99.65 1 i (y,z1)

z1 y
4   99.80208327  

October 1, 2003 
  99.80208327  1 i( z1, z2 ) z2 z1 2  99.92553188  

November 15, 2003 
 99.92553188 1 i(z2 , z3 ) z3 z2 101  0  

In practice, the spot rates, that are realized on the market on the subsequent due 
dates, can be different from the foreseen ones on the basis of the  above-mentioned 
hypothesis.  

If, for example, the observed spot prices are higher than the foreseen rates and 
are equal to: 

ieff (y,z1) i (y,z1) 0.085069444

ieff (z1,z2) 0.088865467

ieff (z2,z3) 0.089432222

 

then the described operation would imply, for the debtor, a loss of 0.02495764 
which is equal to the outstanding balance at maturity. In fact we have: 

   Time       Outstanding balance 

January 1, 2003   99.65 

July 1, 2003 99.65 1 i (y,z1) z1 y 4  99.80208327  

October 1, 2003 
    99.80208327  1 i( z1, z2 ) z2 z1 2  99.92553188  

November 15, 2003       99.94904525 1 ieff (z2,z3)
 z3 z2 101 0.02495764   

If the observed spot prices were lower than the foreseen ones, then the operation 
described above would imply a profit for the debtor. 
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7.5. Term structures 

7.5.1. Structures with “discrete” payments       

The previous formulae gave prices, rates and intensities for spot or forward 
contracts, related to payment dates in . 

According to market practice, without loss of generality, we now suppose for the 
payment dates a discrete “lattice” type distribution,  i.e. such that the payments are 
made at the beginning (or the end) of periods of the same length, that we assume to 
be unitary7. Then, referring to a contract time t  , let us consider a complex 
security with n equi-staggered maturities, that we assume as positive integers, 
starting from t; then we use a payment schedule (t, t+1,..., t+n). It follows that for 
financial valuations made in the previous section, we are interested in spot prices 
v(t,t+k) and forward prices s(t;t+h,t+k), spot rates i(t,t+k) and forward rates 
i(t;t+h,t+k) (referred to the year or, as a general case, to any unit of time), spot  
intensities r.m. (t,t+k) and forward intensities r.m. (t;t+h,t+k), where: 

  h   ,  k  ; 1  h  k  n .  (7.24) 

In this case the definitions and coherence relations seen for the general case are 
valid. In particular, if h=k  the forward prices have value 1 and the forward rates 0.   

If the referring time t (i.e. of contract or valuation) is only one, in the sense that 
no other date is simultaneously considered, it is convenient to put t=0. Such a choice 

                                                           
7 No necessarily annual. As an example, with semiannual, quarterly, etc., due dates in the 
market, it is enough to assume semester, quarter, etc., as the unit of measure adjusting times 
and equivalent rates and assuming a semiannual, quarterly etc., structure of prices and rates. 
We will develop this in section 7.5.2 in more details. The only restriction to such measure 
variation is that the due dates are rational numbers. In such a case, written in the form mi/di , 
(i  =1....n) and indicating by lcm the least common multiple of the denominators d1,...,dn  
(obtained, as known, decomposing them into factors and taking the product of common and 
non-common factors, each with the highest exponent), it is enough to reduce the unit of 
measure according to the ratio lcm, where – using ki = lcm /di – the new maturities are the 
integers miki . By filling the tickler with all other integers in the interval where we put 
payments equal to zero, we obtain the wanted tickler with a unitary period. For example, 
assuming the maturities December 7, August 13, May 22,  the lcm of denominators is 3.5.23 = 
120. Therefore, reducing by 120 the unit of measure, we have: k1 = 10, k2 = 15 , k3 = 24 and 
the new maturities are 70, 195, 528. By completing with natural numbers the interval (70, 
528) (in which, except for the three given times, we put no payments), we obtain the wanted 
distribution. In addition, we have to observe that more often the market gives returns by 
means of annual rates (or intensities) where in such cases we have to find the equivalent rates 
between year and the period here used as unitary, if it is subdivision of a year. 
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is not restrictive, if we consider the arbitrary time origin,8 and it allows the reduction 
of the symbols, where the first variable is implicit and the other time variables are 
written by bottom indexes. It is then enough, with the aforesaid meaning of the 
symbols, to use9:  

 v(t,t+k) = vk ;  s(t;t+h,t+k) = sh,k  

 i(t,t+k) = ik ;  i(t;t+h,t+k) = ih,k   (7.25) 

  (t,t+k) = k ;  (t;t+h,t+k) = h,k 

Then we assume, unless stated otherwise, the symbols in (7.25) and the 
hypothesis that encashment on securities can occur only on the dates 

 T  =   (1,...,k,...,n)  (7.26) 

It follows that we measure e.h. with natural numbers. Let us also assume a 
market complete and perfect (or, at least, coherent) in the sense that there is the 
possibility of having a zero-coupon bond at each time in (7.26) and the known 
properties hold true, amongst which is the property of independence from the 
amount and coherence.  

We can then outline the term structures for prices and rate in case of discrete 
dates, deducing the formulas that, referring to prices, rates and intensities express 
each of them as function of the others. They are obtained from those seen in 
section 7.2 and 7.3 considered for the discrete case, i.e. using x=0 and y,z  . For 
simplicity, from now on we will assume in the application the annual unit of 
measure, but it is easy to also consider multiples or submultiples periods, as we will 
see in section 7.5.2.  

Spot structures  

The symbols in (7.12) and (7.15) give the spot prices (SP) V(0,k;Sk)  in t=0 of 
the zero-coupon bonds that pay the amount Sk in k. It follows that  

 vk  =  V(0,k;Sk) / Sk (7.27) 

                                                           
8 The position t=0 does not imply uniformity in time of the financial law underlying the rates 
term structure. However, if we assume uniformity of time, the financial results do not depend 
on the choice of the time origin. In more general cases, for instance, if we have to compare or 
take into account in the same context different structures with different transaction times t1, t2, 
..., we have to refer to the general case defined above.  
9  The single time subscript of the spot rate are not to be confused with those used in Chapter 
3 and 5, which have a different meaning. In the same way the double subscript in the forward 
parameters with integer time are not to be confused with the pairs of variables of the spot 
parameters with real times seen in section 7.2. 
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is the SP of the corresponding UZCB. For the linearity property of price it is not 
restrictive to refer only to UZCB with SP vk. Thus, it is clear that for a portfolio of n 
zero-coupon bonds with amounts Sk payable in k, (k = 1,...,n) – where the security 
that is entitled to the supply (k,Sk) is equivalent to a given number of zero-coupon 
bonds with amount payable in k the sum of which is Sk – the SP is:   

 V(0,S)  =  Skk 1
n

 vk  (7.27') 

From the sequence {vk} we find the rate structure (on annual bases) of spot 
interest {ik} in t=0 by means of the following formula that describes equivalently 
the scenario of the SP: 

 ik  =   vk
-1/k - 1  ,  (k = 1, ... ,n)  (7.28) 

If the spot rates are ik in t=0, we find the unitary price, inverting (7.28): 

 vk  =  [1 +  ik]-k ,  (k = 1, ... , n)  (7.28') 

From the sequence {vk} or the sequence {ik} we find the instantaneous 
intensities r.m. structure k  in t=0 for spot contracts. It is enough to modify (7.28) 
or (7.28') and consider the natural logarithm, resulting in: 

k  =   - ln vk/k  =   ln [1 + ik]  (7.29) 

Inverting (7.29) we find: 

 vk  =  e -k 
k  ;   ik   =  e k - 1 (7.29') 

Example 7.14 

In the market of zero-coupon bond with redemption value 100, are fixed today 
(t=0) the following SP dependent on annual payments dates,  which, divided by 100, 
define vk: 

 96.28  with maturity 1;   93.71  with maturity 2;   
 90.08  with maturity 3;   87.88  with maturity 4. 

The corresponding spot rates structure in 0 is as follows: 

 i1 = v1
-1 -1    =  0.038637  = 3.8637%;   

 i2 = v2
-0.5 -1 =  0.033016  = 3.3016% 

 i3 = v3
-0.333-1 =  0.035437  = 3.5437%   

 i4 = v4
-0.25 -1 =  0.032827  = 3.2827% 
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The intensities r.m. structure is as follows: 

 1 = -ln v1       =  ln (1+i1) = 0.037910 
 2 = -ln v2/2     =  ln (1+i2) = 0.032483 
 3 = -ln v3/3    =  ln (1+i3) = 0.033424 
 4 = -ln v4/4     =  ln (1+i4) = 0.032299 . 

From the sequence {vk} we find the spot discount (or advance interests) rate (on 
an annual basis) structure {dk} in t = 0 on the interval (0,k) by means of the 
following formula: 

 dk  =   1 - vk
1/k ,      (k = 1, ... , n)  (7.28") 

which is obtained by inverting: vk  =  (1 - dk)k .  

By comparing (7.28') and (7.28") we find 

 dk  =  ik / (1+ik ) ,     (k = 1, ... , n)  (7.28'")  

that generalize a well known formula valid for flat structure, obtainable form (3.53). 

Example 7.15 

With the same value vk  as in Example 7.14, the annual spot discount rates are, 
according to (7.28"): 

d1  = 1 - v1
1.000  =  0.037200  ;  d2 = 1 - v2

0.500  =  0.031961; 

d3  = 1 - v3
0.333 =  0.034225  ;  d4 = 1 - v4

0.250  =  0.031783. 

The results for the spot structure obtained in Examples 7.14 and 7.15 can be 
easily found using an Excel spreadsheet as shown below. 

           

Maturit
y 

Spot price % Delayed spot rate Spot intensity 
r.m.  

Advance spot 
rate 

1 96.28 0.0386373 0.0379096 0.0372000 

2 93.71 0.0330160 0.0324826 0.0319607 

3 90.08 0.0354375 0.0348240 0.0342246 

4 87.88 0.0328268 0.0322995 0.0317834 

Table 7.1. Spot structure 
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The Excel instructions are as follows. 2nd row: titles; from the  3rd row: 
column A A3: 1; A4:= A3+1; copy A4, then paste on A5 to A6; 
column B  insert data (spot prices %) on B3-B6; 
column C C3:= (B3/100)^-(1/A3)-1; copy C3, then paste on C4 to C6; 
column D  D3:= ln (1+C3); copy D3, then paste on D4 to D6; 
column E  E3:= 1-(B3/100)^(1/A3); copy E3, then paste on E4 to E6. 

Forward structures 

The market fixes the structure of prices, rates and intensities for forward 
contracts. In a coherent market the implicit forward structure is assumed, i.e. derived 
from the spot structures on the basis of formulae that adapt (7.18) to (7.24).  

Always using the contract time in t=0, we obtain the following basic relation that 
expresses the forward price (f.p.) structure sk-1,k of UZCB according to the spot 
structure vk for annual e.h. (or uniperiod): 

 sk--1,k   =  
 

vk

vk-1

  ,        (k = 1,...,n)  (7.30) 

which, for k=1, simply expresses the known relation for the SP: s0,1 = v1.  

The corresponding structure of forward (implicit) interest rates for annual e.h. is 
given by 

 ik--1,k  =  sk--1,k -1 - 1 =  
 

vk-1

vk

 - 1 ,   (k = 1,...,n)  (7.31) 

By inversion we find 

 sk--1,k   =  (1 + ik-1,k)-1 (7.31') 

From (7.31), and recalling (7.28), the implicit rates theorem, which is expressed 
by the following equation, is obtained: 

 1 + ik--1,k   =  1

1

k

k-1
k

k - 1

+i

+i

 ,        (k = 1,...,n) (7.32) 

which gives the implicit forward structure according to the spot structure.  



Exchanges and Prices on the Financial Market     315 

The forward market structure can be expressed according to the spot structure 
also using the intensity r.m. k-1,k , obtainable from ik-1,k and sk-1,k  using 

k-1,k  =  ln (1+ik-1,k)  =  -ln sk-1,k ,  (k = 1,..., n)  (7.29") 

In fact it is possible to show the validity of the formula:   

k-1,k = k k - (k-1) k-1 ,    (k = 1,...,n)  (7.22') 

which particularizes (7.22). Applying this formula recursively with varying k, by 
adapting (7.23) to discrete times, the following is obtained: 

k  =  
 r 1,r / kr 1

k  ,  (k = 1,..., n)  (7.23') 

i.e. the spot intensity for k periods is the arithmetic mean of the forward intensities 
in the unitary periods of such horizon (spot in the first of them). 

By applying (7.32) recursively, we finally find that 

  (1 + ik )k  =  (1 ir 1,r )
r 1
k

 ,  (k = 1,...n)  (7.33) 

i.e. the spot accumulation factor 1+ik , with reference to the horizon of k unitary 
consecutive periods, is the geometric mean of k forward accumulation factors 
relative to the single periods. In this sense the rate ik on the e.h. (0,k) in a coherent 
market is a functional mean, according to Chisini, of the forward rates ir-1,r.  

If, instead, the rates varying for unitary horizons are given as ik--1,k, we implicitly 
find the spot prices, expressed by  

 vk = (1 + ik) -k   =   
(

r 1
k

1+ir-1,r )-1 ;  (k = 1,...,n)  (7.30') 

Sometimes it is convenient to highlight the corresponding forward discount (or 
advance interest) rate (implicit) structure for annual e.h., expressed by 

 dk--1,k  =  1 - sk--1,k  =  1 - 
 

vk

vk-1

 ,   (k = 1,...,n)  (7.31") 

from which, recalling (7.28"), we find 
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 1 - dk--1,k   =   

 

 k
1-dk

 k-1
1-dk - 1

  ,       (k = 1,...,n)  (7.32') 

which links forward discount rate structure as a function of the spot ones. Applying 
recursively (7.32'), we finally find 

  [1 - dk]k  =  
 [

r 1
k

1- dr-1,r ] ,     (k = 1,...,n)  (7.33') 

analogous to (7.33), i.e. the spot discount factor (1-dk) referred to the horizon of k 
unitary consecutive periods is the geometric mean of the k forward discount factors 
of each period. 

Example 7.16 

In a coherent market the discount factors vk , (k = 1,...,4), obtained from the spot 
prices for annual horizons up to 4 years, given in Example 7.14, are fixed. The 
forward price structure sk-1,,k for unitary securities for annual horizons is as follows: 

s0,1  =  0.9628/1.0000  =  0.962800 
s1,2  =  0.9371/0.9628  =  0.973307 
s2,3  =  0.9008/0.9371  =  0.961263 
s3,4  =  0.8788/0.9008  =  0.975577 

The corresponding implicit forward interest rate structure is 

       

  
 ik -1,k [sk 1,k ] 1 1

[1 ik ]k

[1 ik 1]k 1
1 

and recalling the results of Example 7.14, the structure assumes the values:  

i0,1  =  0.962800-1 -1  =  0.038637  =  1.038637
1

 1 

i1,2  =  0.973307-1 -1  =  0.027425  =  
 

1.033016 2

1.038637
1  

i2,3  =  0.961263-1 -1  =  0.040298  =  
 

1.035437 3

1.033016 2
1 

i3,4  =  0.975537-1 -1  =  0.025434  =  
 

1.032827 4

1.035437 3
1  
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Let us verify (7.33) for the values obtained here: 

 k=1:  1.038637 =  1.038637 
 k=2:  1.0330162 =  1.038637 . 1.027425 
 k=3:  1.0354373 =  1.038637 . 1.027425 . 1.040298 
 k=4:  1.0328274 =  1.038637 . 1.027425 . 1.040298 . 1.025034 

The corresponding implicit forward discount rate structure (which is seldom 
used)   

dk-1,k = 1 - sk-1,k  assumes the following values: 
d0,1 = 0.037200;    d1,2 = 0.026693; 
d2,3 = 0.038737;    d3,4 = 0.024423. 

It is left as an exercise for the reader to verify (7.32') and (7.33'), recalling the 
results of Example 7.15.  

The developments of the results obtained in Example 7.16, can be easily 
obtained using an Excel spreadsheet as follows, as can a comparison of the spot rates 
given by (7.28) and reported in Example 7.16. 

Maturity Spot price% Fwd price  Spot rate Fwd delayed 
rate 

 Fwd 
intensity 

Fwd advance 
rate 

1 96.28 0.962800 0.038637 0.038637 0.037910 0.037200 

2 93.71 0.973307 0.033016 0.027425 0.027056 0.026693 

3 90.08 0.961263 0.035437 0.040298 0.039507 0.038737 

4 87.88 0.975577 0.032827 0.025034 0.024726 0.024423 

Table 7.2. Spot and uniperiod forward structure 

The Excel instructions are as follows: 2nd row: titles; from the 3rd row: 

column A: A3: 1; A4:= A3+1; copy A4-paste on A5 to A6; 
column B:  insert date (spot price %) on B3 to B6; 
column C:  C3:= B3/100; C4:= B4/B3; copy C4, then paste on C5 to C6; 
column D:  D3:= (B3/100)^-(1/A3)-1; copy D3, then paste on D4 to D6; 
column E:  E3:= (1/C3)-1; copy E3, then paste on E4 to E6; 
column F:  F3:= ln (1+E3); copy F3, then paste on F4 to F6; 
column G:  G3:= 1-C3; copy G3, then paste on G4 to G6. 
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The description of a forward structure can be completed with the extension to 
prices and interest rates for e.h. not only unitary but of integer positive length (then 
uni- and multi-period). The market gives at contract time t=0 the forward prices sh,k 
of the UZCBs paid in h and entitle us to the unitary amount in k, with h,k specified 
in (7.24).  

Such prices sh,k  can be expressed as elements of an n n  upper triangular 
matrix (if h is the row index and k the column index), i.e. 

 

    

 

1,1s 1,2s 1,3s .. 1,ns
2,2s 2,3s .. 2,ns

3,3s .. 3,ns
.. ..

n,ns

  (7.34) 

where: 

 
,

 =  1  ,   
 

<  1  , h k

if   h= k
s

if   h < k
  ,      1  h  k  n (7.34') 

The number of elements in (7.34) is n/(n+1)/2, but the meaningful prices ( 1)  
are those for which h<k, the number of which is n(n-1)/2.  

In the coherent market hypothesis, due to (7.18), for the dates (7.24) the general 
formula holds, that is the basis of a forward structure for a transaction made in t=0: 

 
    
sh,k

vk

vh
  ,    (1  h < k  n)  (7.35) 

Owing to: 

  

vk

vh
 = 

  

vk

vk-1
 
  

vk -1

vk-2
 .... 

  

vh+1

vh
 

we find, adapting the indices in  (7.30), that: 

 sh,k   =      sr-1,rr h 1
k  =   

(1+ ir-1,r ) 1
r h 1
k

 (7.36) 
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If we want to express the constraint of the forward structure working on the 
rates, then indicating with ih,k the agreed interest rate in 0 on the e.h. (h,k), using 
(7.31) we obtain:  

 [1+ih,k]k-h = vh

vk

= 
  

vk

vk-1

 
vk-1

vk-2

...
vh+1

vh

1

=    [1 +  ir-1,rr=h+1

k ]  (7.37) 

Equation (7.37) expresses the annual forward accumulation factor, averaged on 
e.h., as a geometric mean of the forward accumulation factors for each period and 
links it to the f.p. of the UZCB. In the last term of (7.37), we can read the varying 
per period rates applicable in the market; the comparison with the left side shows 
that ih,k is equivalent to the mean forward rate on the horizon (h,k) in the flat 
structure that follows from the exponential regime. 

From (7.37) we find the delayed forward interest rate (annual base) on the e.h. 
(h,k): 

 ih,k  = sh,k 
-1/(k-h) – 1 (7.38)  

or advance  

 dh,k  = 1 - sh,k
1/(k-h)  (7.39) 

(obtaining this last formula using a generalization of (7.28")).  

For a comparison between (7.38) and (7.39), we find the relation between rates, 
analogous to (7.28'") 

 dh,k  =  ih,k /(1+ih,k)  (7.39') 

Example 7.17 

Still using the structure of the SP given in Example 7.14, let us find the 
corresponding structure of the f.p. in a coherent market, leaving out the restriction of 
annual horizons. In this case, the upper triangular matrix sh,k (1  h  k  4), with h = 
row index and k = column index, is of order 4 and assumes the values given below, 
found through (7.35).  

Using v1 = 0.9628; v2 = 0.9371; v3 = 0.9008; v4 = 0.8788, let us find the prices 
matrix sh,k  and forward rates ih,k by means of an Excel spreadsheet that has the 
following form. 
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Prices structure sh,k  

H Price sp 
% 

k=1 k=2 k=3 k=4 

1 96.28 1.00000
0 

0.973307 0.935604 0.912754 

2 93.71  1.000000 0.961263 0.937787 
3 90.08   1.000000 0.975577 
4 87.88    1.000000 
    

Rates structure  ih,k  

H  k=1 k=2 k=3 k=4 
1   0.027425 0.033841 0.030897 
2    0.040298 0.032638 
3     0.025034 
4    

Table 7.3. Uni- and multi-period forward structure 

The Excel instructions are as follows: 1st and 2nd  row: empty; then: 

price structure: from 3rd to 8th row. 3rd and 4th row: titles; rows 5-8: 
column A  A5: 1; A6:= A5+1; copy A6, then paste on A7 to A8; 
column B insert data (spot prices %) on B5 to B8; 
diagonal (k=h) C5:1; D6:1; E7:1; F8:1;  
1° supradiagonal (k=h+1):  D5:= $B6/$B5; copy D5, then paste on E6, F7; 
2° supradiagonal (k=h+2) E5:= $B7/$B5; copy E5, then paste on F6; 
3° supradiagonal (h+2=k) F5:= B8/B5; 

rate structure: from 10th to 15th row. 10th and 11th row: titles; rows 12-15: 
column A A12: 1; A13:= A12+1; copy A13, then paste on A14 to 
 A15; 
1° supradiagonal (k=h+1) D12:= D5^-(1/($A6-$A5))-1; copy D12, then 

paste on E13, F14; 
2° supradiagonal (k=h+2) E12:= E5^-(1/($A7-$A5))-1; copy E12, then  

paste on F13; 
3° supradiagonal (h+2=k) F12:= F5^-(1/(A8-A5))-1; 
oher cells: empty. 
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In the price matrix the values on the first supradiagonal are obviously the prices 
sk-1,k obtained in Example 7.16. The corresponding implicit rates (excluding those 
that are reduced to spot rates) are found by means of (7.37). 

Let us verify the properties of (7.37). With the numbers obtained by the previous 
matrix ih,k we find: 

 e.h. 1-3:  1.033841 2    =     1.027425 . 1.040298 
 e.h. 2-4:  1.032638 2     =     1.040298 . 1.025034  
 e.h. 1-4:  1.030897 3    =     1.027425 . 1.040298 . 1.025034 

If we complete the matrix ih,k  using ih,k = 0 if h k , and add 1 to each element 

of the square matrix ih,k  thus obtained, then in each square submatrix, extracted 

from the new matrix and such that its main diagonal has elements ih,k  satisfying 

h<k, the number written in the NE vertex is the geometric mean of those which 

appear on the main diagonal of the submatrix.  

The previous considerations show how the gathering of market prices implicitly 
leads us to formalize on the given time horizon (h,k) a financial exchange law, 
defined only on integer time variables, that can be expressed by means of discount 
factors sh,k (<1 if h<k) defined in (7.5) or analogously by means of accumulation 
factors rh,k  = 1/sh,k  or interest rates ih,k  or discount rates dh,k. 

On the contrary, we can think – as was already observed at the beginning of this 
chapter – that the term structure valid in a market follows the definition of an 
empirical financial law that in a given time interval holds on the market for simple 
operations. Such a formulation can be extended to complex operations, in particular 
to annuities and amortizations. This will be considered in Chapter 8. 

Observation 

From the previous formulations, in particular from (7.33), it is obvious that the 
term structure maintains the principle of compound accumulation, even if in a more 
general way that leads to varying rates. 

Building up the term structure of spot and forward rates. 

Referring to the bond market, the use of spot rates implies that the financial 
flows generated by different securities are assumed to be discounted at the same 
rate. It is then essential to deduce from the available data the so-called term 
structure of spot rates applicable to all securities of the market as a function of the 
different evaluation time interval. 
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It is possible to find this structure, expressed by spot rates for the same interval 
terms, starting from an observation taken from the market on the issues prices of 
bonds with maturities increasing in arithmetic progression (according to natural 
numbers, on the basis of an appropriate choice of the unit time). We can then find a 
sequence of spot rates applicable to the examined market. 

The calculation procedure can be described as follows: decide the time unit and 
change the rates accordingly; carry out a statistical observation of the issue prices 
(i.e. at time 0) of the securities in a bond market with different financial profiles; 
obtain a price for each of the maturities h = 1,...,n. If we refer to a coupon bond with 
maturity h, knowing the price V(h) and the coupon amounts {Ik}, k = 1,...,h, and the 
redemption Ch for the bond with maturity h 10 we can write the solving system, 
where the price V(h) of the bonds maturing after h periods is made equal to the 
present value according to the unknown rate structure. This system is given by: 

  
V(h ) Hh 1

Ih Ch

(1 ih )h
  ,   h = 1,...,n

  (7.40) 

where: 

H0 0  ,  Hh
Ik

(1 ik )k
 , h =1,...,n -1

k 1
h

 (7.41) 

In (7.40), the unknowns ih  appear in a triangular way, in the sense that in the 1st  
equation (h=1) we have only i1  which is then found directly, in the 2nd equation 
(h=2) we have i1 and i2 which are again found directly knowing i1 in H1; then, in 
the hth equation the first term is found using (7.41) and in the second term the only 
unknown is ih  which is found immediately.  

This procedure assumes the existence of a sequence of securities with maturities 
distributed at regular intervals and quoted at equilibrium prices. Note that, different 
from the yield rates, there exists for each time interval a biunivocal correspondence 
between spot rates and prices.  

Example 7.18 

Let us apply the procedure to build up the spot rate structure, starting from the 
price sequence, referring to five bond types (which are not all zero-coupon bonds), 

                                                           
10 For the ZCB it is enough to set all the values {Ik} at zero.  
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with equally spaced maturities. Data are summarized in the first four columns of the 
following tables; each row is referred to one bond; the first three are zero-coupon 
bonds and the other two have fixed coupons. The last column gives the results, 
obtained as specified below, i.e. the spot rates referred to the length of the bond 
specified in the here 2nd column (but valid in the market of the bonds considered). 

Nominal value Residual length 
(in years) 

Semiannual 
coupon 

Market price Spot rate  (%) 
on given length 

100 0.25             0% 98.90 4.524 

100 0.50             0% 97.64 4.893 

100     1.00             0% 95.11 5.141 

100 1.50             3%       100.84 5.495 

100 2.00             2.50% 98.80 5.741 

 Table 7.4. Computation of spot rate structure 

For each of the zero-coupon bonds, the price is given by 100.vk where k=0.25; 
0.50; 1.00 and the spot rate is found applying (7.8), i.e. 

0.9890 1/ 0.25 0.04524 ; 0.9764  1/ 0.50 0.04893 ; 0.9511 1 0.05141  

The first three spot rates are then obtained in the last column. The 4th bond, with 
fixed coupon, is entitled supplies: (0.5,3), (1,3), (1.5,103), and the price is the sum 
of the present values of each amount using the spot rate referred to its time. The first 
two rates (in 2nd and 3rd row) are already known: their values are i0.50 = 4.893% and 
i1.00 = 5.141%. The third, i.e. i1.50, is obviously the solution to the following 
equation: 

3

1.04893 0.50
3

1.05141
103

(1 i1.50)1.50
100.84

 

from which  i1.50 = 0.05495. The 5th bond, with fixed coupon, is entitled to the 
following supplies: (0.5; 2.5), (1; 2.5), (1.5; 2.5), (2; 102.5), and here the price is the 
sum of the discounted values with four spot rates referred to the intervals which are 
multiples of a half-year. The first three, indicated with i0.50, i1.00 and  i1.50, are 
already known. The fourth, i.e. i2.00, is obtained analogously as the solution of the 
following equation: 

2.5

1.04893 0.5
2.5

1.05141
2.5

1.05495 1.5
102.5

(1 i2.00)2
98.80 
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from which  i2.00 = 0.05741. In this way, substituting the results found in the 
subsequent equations for fixed coupon bonds, we find the whole term structure of 
spot rates corresponding to the price gathered on the market for the examined 
securities.  

Also for a forward contract, we can build up a term structure of forward rates. It 
is enough to refer to the building up of a sequence of spot rates seen before and 
obtaining from them the implicit forward rates, on the basis of market coherence.    

7.5.2. Structures with fractional periods      

As already shown at the beginning of section 7.5.1, we clarified that the time 
structure in “discrete” scheme is referred to unitary periods, but the unit of times is 
not necessarily a year. In financial practice, there are market structures with a period 
which is not annual, but fractional, in which spot and forward prices, rates, 
intensities r.m have as a basis a fraction of a year (semester, quarter, month, etc.), 
while pluriennial periods are not used. In such a case, the e.h. and the bond 
maturities will be multiples of such fractional periods. Let us give a brief insight into 
this argument. 

We must observe that the definition and transformation formulae given in section 
7.5.1 are still valid, without any modification, with fractional periods, except for the 
time measure that is no longer a year, but a fraction of a year. Then the prices 
concern assets with fractional maturities and the rates refer to periods that are 
fractions of a year.  

It is unnecessary to repeat here the formulae to adapt them to this case: it is 
enough to declare the different time unit. The argument will then be clarified 
developing, using Excel, Examples 7.19, 7.20 and 7.21, which closely follow 
Examples 7.15, 7.16 and 7.17, which refer to annual bases. 

Example 7.19 

On the UZCB market there is fixed today (t=0) the following SP as a function of 
the quarterly maturities, which define vk , assuming the quarter as the unit to 
measure time:  

– 0.9866  with maturity after one quarter;  0.9788  with maturity after two 
quarters; 

– 0.9654  with maturity after three quarters;  0.9521  with maturity after four 
quarters. 
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In the following Excel table, with formulations analogous to those see in 
Example 7.15, the corresponding structures of spot delayed and advance rate and 
also of the intensity r.m. are set out. 

Maturity Spot price Delayed spot rate Spot intensity r.m.  Advance spot 
rate 

1 0.9866 0.0135820 0.0134906 0.0134000 
2 0.9788 0.0107716 0.0107140 0.0106568 
3 0.9654 0.0118067 0.0117376 0.0116690 
4 0.9521 0.0123469 0.0122713 0.0121963 

Table 7.5. Quarterly basis spot structure 

Comparing with the Excel instruction of Example 7.15, to go from the 2nd column to 

3rd and 5
th

  column we do not have to divide by 100, because they are prices of 
UZCB.  

Example 7.20 

Using the data on prices given in Example 7.19, in the following Excel table are 
fixed starting form the spot structure, with formulations analogous to what was seen 
in Example 7.16, the corresponding one period structure of forward prices and rates, 
delayed and advance, and also the intensity r.m. 

Maturity Spot price Fwd price  Spot rate Fwd delayed 
rate 

Fwd intensity Fwd advance 
rate 

1 0.9866 0.986600 0.013582 0.013582 0.013491 0.013400 

2 0.9788 0.992094 0.010772 0.007969 0.007937 0.007906 

3 0.9654 0.986310 0.011807 0.013880 0.013785 0.013690 

4 0.9521 0.986223 0.012347 0.013969 0.013872 0.013777 

Table 7.6. Quarterly basis spot and uni-period  forward structure 

 Comparing with the Excel instruction of Example 7.16 to go from the 2nd 
column to 3rd and 4th column we do not have to divide by 100, given that one 
considers prices of UZCB.  

Example 7.21 

Using the data on prices given in Example 7.19, in the following Excel table with 
formulations analogous to what seen in Example 7.17, the corresponding 
multiperiod structure of forward prices and rates is set out. 
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 Prices structure s0;h,k   

h Spot price k=1 k=2 k=3 k=4 
1 0.9866 1.000000 0.992094 0.978512 0.965031 
2 0.9788  1.000000 0.986310 0.972722 
3 0.9654   1.000000 0.986223 
4 0.9521    1.000000 
     

 Rates structure i0;h,k   

H  k=1 k=2 k=3 k=4 
1   0.007969 0.010920 0.011936 
2    0.013880 0.013925 
3     0.013969 
4      

Table 7.7. Quarterly basis uni- and multi-period forward structure 

The Excel instructions are those in Example 7.17. 

Observations 

In banks and Stock Exchange markets it is used to consider nominal annual 
return rates even in case of fractional structures. In the considered case, with 
quarterly structure and data from Example 7.20 (with structures of any frequency, it 
is enough to use m instead of 4), given the uniperiod forward rates in the 5th column 
of the following Excel table, it is enough to multiply by four to have (in the 6th  
column) the nominal annual return in the current quarters. 

However, these values show on an annual basis the return of each quarter, but do 
not give the effective return rate obtained on an annual e.h. To obtain this, starting 
from an investment in 0 with a given structure, we proceed as follows. The return 
rate rk on an e.h. of k periods is found from   

 1+rk  = (1 + ik )k  =  (1 ir 1,r )
r 1
k  (7.33") 

which extends (7.33) referring to fractional structures. For k=1,2,3,4, the values of ik 
are the quarterly spot rates shown in the 4th column of the table, while the values of 
rk are shown in the 7th column and are the return rates on the e.h. of the first k 
quarters, which is also the basis. In particular, for k=4 we obtain (with the data of 
Example 7.20 to which the table is referred) the rate 0.050310, which is the effective 
return rate for one year and on an annual basis,  better than the nominal rate. 
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k Spot price Fwd price  Spot rate Fwd rate  Nominal 
annual rate

Return rate 
0-k 

1 0.9866 0.986600 0.013582 0.013582 0.054328 0.013582 
2 0.9788 0.992094 0.010772 0.007969 0.031876 0.021659 
3 0.9654 0.986310 0.011807 0.013880 0.055521 0.035840 
4 0.9521 0.986223 0.012347 0.013969 0.055876 0.050310 

Table 7.8. Nominal annual rates in the current quarters 

The Excel instructions for this table are as follows. After 2nd row for titles, the 
first 5 columns are the same as those in Example 7.20; in addition: 
6th column:  (nominal annual rates) F3:= 4*E3; copy F3, then paste on F4 to F6; 
7th column:  (return rates e.h. 0-k) G3:= (1+D3)^A3-1; copy G3, then paste 
 on G4 to G6.  

7.5.3. Structures with flows “in continuum” 

Let us consider the case in which the flows are continuous (for instance a 
continuous trading market). Let us first observe that, assuming continuous time, the 
formulae (7.8) and (7.8") are enough to define the spot rate i(x,y) and the spot 
intensity (x,y) according to the SP v(x,y).  

In addition, with continuous payment flows, the implicit structure, corresponding 
to the spot structure, we have to consider infinitesimal e.h. (y, y+dy) where the 
forward prices s(x;y,y+dy) go to 1 and the implicit forward rates i(x;y,y+dy) go to 0, 
losing any meaning. It is then appropriate to refer directly to the instantaneous 
discount intensity time structure. The spot structure is found from formulae of the 
type of (2.23) (or inversely (2.24)) reinterpreted in market terms. The term structure 
is found from the spot structure based on the known constraints. The functions 

    (x, y )  are then the starting point of the term structure in continuous time.  

With discrete schedules we can build up a term structure starting from an 
instantaneous intensity     (x, y )  that gives, always in symmetric hypothesis, an 
exchange law in continuum, from which are found spot and forward prices, rates and 
intensities r.m.. We show here the following formulae that are immediately 
justifiable (referring to a transaction time that is not to restrictive too put in t = 0): 

 vk =  e
(0,u )du0

k

 (7.42) 

 sh,k  =  e
(0,u )duh

k

 (7.43) 
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  ik  =  e
( (0,u )du ) / k

0
k

-  1 (7.44) 

   ih,k  =  e
( (0,u )du ) /(k h )

h

k

 -  1 (7.45) 

 
 k

 =  1

k
(0,u)du0

k
 (7.46) 

 

    
h,k

 =  1

(k - h)
(0,u)duh

k
 (7.47) 

Example 7.22 

For investment on the horizon (0;5), the return financial law is ruled by the 
instantaneous intensity (0,u), according to current time u, (0  u  5), for operations 
agreed in 0, defined by (0,u) = 0.04 + 0.00564 u - 0.00033 u2 , where, for example: 
(0;0) = 0.04; (0;2) = 0.05; (0;5) = 0.06. 

On the horizon (0;5), by means of (7.47), we obtain the intensities r.m.  

k-1,k for annual intervals, that we will indicate with Hk . We obtain: 

Hk  (0,u)du const.  0.04   u 0.00282  u2 0.00011  u3
k 1
k

k 1

k
 

   0.04 +  0.000282 (2k -1) -  0.00011 (3k2 3k 1)  

Thus: 

H1 = 0.042710 ; H2 = 0.047690 ; H3 = 0.052010 ; H4 = 0.055670 ; H5 = 
0.058670 

from which, due to (7.43), the values: 

31 2
0,1 1,2 2,30.958189 ;   0.953429 ;   0.949319 ;  HH Hs e s e s e

  s3,4 e H 4 0.945851 ;   s4,5 e H 5 0.943018  

follow. From the intensities k-1,k = Hk for annual intervals we find, due to (7.45), 
the corresponding implicit forward rates ik-1,k = e H k 1, obtaining:   
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  i1,2 0.048845 ;    i2,3 0.053386 ;   i3,4 0.057249 ;  i4,5 0.060425 .  

The spot intensities r.m.  for k years are written: 

k
1
k

Hrr 1
k

  

and it follows that:  

  1 0.042710 ;    2 0.045200 ;   3 0.047470 ;   4 0.049520 ;  5 0.051350 .  

In addition, the forward intensities r.m. are given by:  

h,k
1

k h
Hrr h 1

k

With the given instantaneous intensity we obtain, for example:  

2;4 = (0.05201+0.05567)/2 = 0.05384. 

The spot rates ik on an horizon of k years, expressed by (7.44), but which can 
also be written in the form e (k) 1, are: 

  i1 0.043635 ;       i2 0.046237 ;    i3 0.048615 ;    i4 0.050767 ;   
i5 0.052691 .    

 


